A Comparison of Accuracy between Decision Tree and k-NN Algorithm
نویسندگان
چکیده
Data mining has many functionalities. One of the main functions of data mining is the classification that is used to predict the class and generate information based on historical data. In the classification, there is a lot of algorithms that can be used to process the input into the desired output, thus it is very important to observe the performance of each algorithm. The purpose of this research is to analyze and compare the performance i.e. accuracy of decision tree (C4.5) and k-Nearest Neighbor (k-NN) algorithms. The evaluation method used is 10-fold cross validation. Evaluation result is a confusion matrix for measuring accuracy in precision, recall, F-measure, and success rate. Based on the comparative analysis, the decision tree algorithm gains the accuracy better by variation of 2.28%-2.5% compared to k-NN algorithm in the implementation for 5 research data sets. Keywords-Classification; Decision Tree; k-NN; 10-fold Cross Validation; Confusion Matrix; Accuracy.
منابع مشابه
A novel hybrid method for vocal fold pathology diagnosis based on russian language
In this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. Then, for optimizing the initial feature vector, a genetic algorithm is proposed. Some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and K-nearest neig...
متن کاملDesigning an intelligent system for diagnosing type 2 diabetes using the data mining approach: brief report
Background: Diabetes mellitus has several complications. The Late diagnosis of diabetes in people leads to the spread of complications. Therefore, this study has been done to determine the possibility of predicting diabetes type 2 by using data mining techniques. Methods: This is a descriptive-analytic study that was conducted as a cross-sectional study. The study population included people re...
متن کاملUsing Data Mining Techniques for Intelligent Diagnosis of Severity of Depressive Disorder
Introduction: Implementing a method that can help individuals diagnose or prevent mental disorders can be an important step in preventing and controlling these disorders especially in the early stages. The objective of this research was to apply data mining techniques for intelligent diagnosis of severity of depressive disorder. Method: The present applied research was carried out by going to a...
متن کاملUsing Data Mining Techniques for Intelligent Diagnosis of Severity of Depressive Disorder
Introduction: Implementing a method that can help individuals diagnose or prevent mental disorders can be an important step in preventing and controlling these disorders especially in the early stages. The objective of this research was to apply data mining techniques for intelligent diagnosis of severity of depressive disorder. Method: The present applied research was carried out by going to a...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کامل